

Welcome to BoxPacker’s documentation!

BoxPacker is an implementation of the “4D” bin packing/knapsack problem i.e. given a list of items, how many boxes do you need to
fit them all in.

Especially useful for e.g. e-commerce contexts when you need to know box size/weight to calculate shipping costs, or
even just want to know the right number of labels to print.

License

BoxPacker is licensed under the MIT license [https://github.com/dvdoug/BoxPacker/blob/master/license.txt].

Warning

You are reading the documentation for BoxPacker v1 which is no longer maintained except for the bare minimum work
to allow it to function on newer PHP versions.

All users are recommended to upgrade to v3.

Contents

	Installation

	Principles of operation

	Getting started

	Weight distribution

	Advanced usage

	What’s new / Upgrading

Installation

The recommended way to install BoxPacker is to use Composer [https://getcomposer.org]. From the command line simply execute the following to add
dvdoug/boxpacker to your project’s composer.json file. Composer will automatically take care of downloading the source
and configuring an autoloader:

composer require dvdoug/boxpacker

If you don’t want to use Composer, the code is available to download from GitHub [https://github.com/dvdoug/BoxPacker/releases]

Requirements

BoxPacker is compatible with all versions of PHP 5.4+

Versioning

BoxPacker follows Semantic Versioning [http://semver.org/]. For details about differences between releases please see What’s new

Principles of operation

Bin packing is an NP-hard problem [http://en.wikipedia.org/wiki/Bin_packing_problem] and there is no way to always achieve an optimum solution without running through every
single permutation. But that’s OK because this implementation is designed to simulate a naive human approach to the problem
rather than search for the “perfect” solution.

This is for 2 reasons:

	It’s quicker

	It doesn’t require the person actually packing the box to be given a 3D diagram
explaining just how the items are supposed to fit.

At a high level, the algorithm works like this:

	Pack largest (by volume) items first

	Pack vertically up the side of the box

	Pack side-by-side where item under consideration fits alongside the previous item

	If more than 1 box is needed to accommodate all of the items, then aim for boxes of roughly equal weight
(e.g. 3 medium size/weight boxes are better than 1 small light box and 2 that are large and heavy)

Limitations

	Items are assumed to be shipped flat (e.g. books, fragile items). The algorithm as implemented therefore considers
simple 2D rotation of items when determining fit but will not try turning items on their side

	The algorithm does consider spatial constraints in all 3 dimensions, plus consideration of weight

Getting started

BoxPacker is designed to integrate as seamlessly as possible into your existing systems, and therefore makes strong use of
PHP interfaces. Applications wanting to use this library will typically already have PHP domain objects/entities representing
the items needing packing, so BoxPacker attempts to take advantage of these as much as possible by allowing you to pass them
directly into the Packer rather than needing you to construct library-specific datastructures first. This also makes it much
easier to work with the output of the Packer - the returned list of packed items in each box will contain your own objects,
not simply references to them so if you want to calculate value for insurance purposes or anything else this is easy to do.

Similarly, although it’s much more uncommon to already have ‘Box’ objects before implementing this library, you’ll typically
want to implement them in an application-specific way to allow for storage/retrieval from a database. The Packer also allows
you to pass in these objects directly too.

To accommodate the wide variety of possible object types, the library defines two interfaces BoxPacker\Item and
BoxPacker\Box which define methods for retrieving the required dimensional data - e.g. getWidth(). There’s a good chance
you may already have at least some of these defined.

If you do happen to have methods defined with those names already, and they are incompatible with the interface expectations,
then this will be only case where some kind of wrapper object would be needed.

Examples

Packing a set of items into a given set of box types

<?php
 use DVDoug\BoxPacker\Packer;
 use DVDoug\BoxPacker\Test\TestBox; // use your own object
 use DVDoug\BoxPacker\Test\TestItem; // use your own object

 $packer = new Packer();

 /*
 * Add choices of box type - in this example the dimensions are passed in directly via constructor,
 * but for real code you would probably pass in objects retrieved from a database instead
 */
 $packer->addBox(new TestBox('Le petite box', 300, 300, 10, 10, 296, 296, 8, 1000));
 $packer->addBox(new TestBox('Le grande box', 3000, 3000, 100, 100, 2960, 2960, 80, 10000));

 /*
 * Add items to be packed - e.g. from shopping cart stored in user session
 */
 $packer->addItem(new TestItem('Item 1', 250, 250, 12, 200));
 $packer->addItem(new TestItem('Item 2', 250, 250, 12, 200));
 $packer->addItem(new TestItem('Item 3', 250, 250, 24, 200));

 $packedBoxes = $packer->pack();

 echo "These items fitted into " . count($packedBoxes) . " box(es)" . PHP_EOL;
 foreach ($packedBoxes as $packedBox) {
 $boxType = $packedBox->getBox(); // your own box object, in this case TestBox
 echo "This box is a {$boxType->getReference()}, it is {$boxType->getOuterWidth()}mm wide, {$boxType->getOuterLength()}mm long and {$boxType->getOuterDepth()}mm high" . PHP_EOL;
 echo "The combined weight of this box and the items inside it is {$packedBox->getWeight()}g" . PHP_EOL;

 echo "The items in this box are:" . PHP_EOL;
 $itemsInTheBox = $packedBox->getItems();
 foreach ($itemsInTheBox as $item) { // your own item object, in this case TestItem
 echo $item->getDescription() . PHP_EOL;
 }
 }

Does a set of items fit into a particular box

<?php
 /*
 * To just see if a selection of items will fit into one specific box
 */
 $box = new TestBox('Le box', 300, 300, 10, 10, 296, 296, 8, 1000);

 $items = new ItemList();
 $items->insert(new TestItem('Item 1', 297, 296, 2, 200));
 $items->insert(new TestItem('Item 2', 297, 296, 2, 500));
 $items->insert(new TestItem('Item 3', 296, 296, 4, 290));

 $volumePacker = new VolumePacker($box, $items);
 $packedBox = $volumePacker->pack(); //$packedBox->getItems() contains the items that fit

Weight distribution

If you are shipping a large number of items to a single customer as many businesses do, it might be that more than one box is
required to accommodate all of the items. A common scenario which you’ll have probably encountered when receiving your own
deliveries is that the first box(es) will be absolutely full as the warehouse operative will have tried to fit in as much as
possible. The last box by comparison will be virtually empty and mostly filled with protective inner packing.

There’s nothing intrinsically wrong with this, but it can be a bit annoying for e.g. couriers and customers to receive e.g.
a 20kg box which requires heavy lifting alongside a similarly sized box that weighs hardly anything at all. If you have to send
two boxes anyway, it would be much better in such a situation to have e.g. an 11kg box and a 10kg box instead.

Happily, this smoothing out of weight is handled automatically for you by BoxPacker - once the initial dimension-only packing
is completed, a second pass is made that reallocates items from heavier boxes into any lighter ones that have space.

For most use-cases the benefits are worth the extra computation time - however if a single “packing” for your scenarios
involves a very large number of permutations e.g. thousands of items, you may wish to tune this behaviour.

By default, the weight distribution pass is made whenever the items fit into 12 boxes or less. To reduce (or increase) the
threshold, call setMaxBoxesToBalanceWeight()

<?php
 use DVDoug\BoxPacker\Packer;

 $packer = new Packer();
 $packer->setMaxBoxesToBalanceWeight(3);

Note

A threshold value of either 0 or 1 will disable the weight distribution pass completely

Advanced usage

Used / remaining space

After packing it is possible to see how much physical space in each PackedBox is taken up with items,
and how much space was unused (air). This information might be useful to determine whether it would be useful to source
alternative/additional sizes of box.

At a high level, the getVolumeUtilisation() method exists which calculates how full the box is as a percentage of volume.

Lower-level methods are also available for examining this data in detail either using getUsed[Width|Length|Depth()]
(a hypothetical box placed around the items) or getRemaining[Width|Length|Depth()] (the difference between the dimensions of
the actual box and the hypothetical box).

Note

BoxPacker will always try to pack items into the smallest box available

Example - warning on a massively oversized box

<?php

 // assuming packing already took place
 foreach ($packedBoxes as $packedBox) {
 if ($packedBox->getVolumeUtilisation() < 20) {
 // box is 80% air, log a warning
 }
 }

Custom Constraints

For more advanced use cases where greater control over the contents of each box is required (e.g. legal limits on the number of
hazardous items per box, or perhaps fragile items requiring an extra-strong outer box) you may implement the BoxPacker\ConstrainedPlacementItem
interface which contains an additional callback method allowing you to decide whether to allow an item may be packed into a box
or not.

As with all other library methods, the objects passed into this callback are your own - you have access to their full range of
properties and methods to use when evaluating a constraint, not only those defined by the standard BoxPacker\Item interface.

Example - only allow 2 batteries per box

<?php
 use DVDoug\BoxPacker\Box;
 use DVDoug\BoxPacker\Item;
 use DVDoug\BoxPacker\ItemList;

 class LithiumBattery implements ConstrainedPlacementItem
 {

 /**
 * Max 2 batteries per box.
 *
 * @param Box $box
 * @param PackedItemList $alreadyPackedItems
 * @param int $proposedX
 * @param int $proposedY
 * @param int $proposedZ
 * @param int $width
 * @param int $length
 * @param int $depth
 * @return bool
 */
 public function canBePacked(
 Box $box,
 PackedItemList $alreadyPackedItems,
 int $proposedX,
 int $proposedY,
 int $proposedZ,
 int $width,
 int $length,
 int $depth
) {
 $batteriesPacked = 0;
 foreach ($alreadyPackedItems as $packedItem) {
 if ($packedItem instanceof LithiumBattery) {
 $batteriesPacked++;
 }
 }

 if ($batteriesPacked < 2) {
 return true; // allowed to pack
 } else {
 return false; // 2 batteries already packed, no more allowed in this box
 }
 }
 }

Example - don’t allow batteries to be stacked

<?php
 use DVDoug\BoxPacker\Box;
 use DVDoug\BoxPacker\Item;
 use DVDoug\BoxPacker\ItemList;

 class LithiumBattery implements ConstrainedPlacementItem
 {

 /**
 * Batteries cannot be stacked on top of each other.
 *
 * @param Box $box
 * @param PackedItemList $alreadyPackedItems
 * @param int $proposedX
 * @param int $proposedY
 * @param int $proposedZ
 * @param int $width
 * @param int $length
 * @param int $depth
 * @return bool
 */
 public function canBePacked(
 Box $box,
 PackedItemList $alreadyPackedItems,
 int $proposedX,
 int $proposedY,
 int $proposedZ,
 int $width,
 int $length,
 int $depth
) {
 $alreadyPackedType = array_filter(
 iterator_to_array($alreadyPackedItems, false),
 function (Item $item) {
 return $item->getDescription() === 'Battery';
 }
);

 /** @var PackedItem $alreadyPacked */
 foreach ($alreadyPackedType as $alreadyPacked) {
 if (
 $alreadyPacked->getZ() + $alreadyPacked->getDepth() === $proposedZ &&
 $proposedX >= $alreadyPacked->getX() && $proposedX <= ($alreadyPacked->getX() + $alreadyPacked->getWidth()) &&
 $proposedY >= $alreadyPacked->getY() && $proposedY <= ($alreadyPacked->getY() + $alreadyPacked->getLength())) {
 return false;
 }
 }

 return true;
 }
 }

What’s new / Upgrading

Note

A full changelog, including changes in versions not yet
released is available from https://github.com/dvdoug/BoxPacker/blob/master/CHANGELOG.md

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to BoxPacker’s documentation!

 		
 Installation

 		
 Requirements

 		
 Versioning

 		
 Principles of operation

 		
 Limitations

 		
 Getting started

 		
 Examples

 		
 Packing a set of items into a given set of box types

 		
 Does a set of items fit into a particular box

 		
 Weight distribution

 		
 Advanced usage

 		
 Used / remaining space

 		
 Example - warning on a massively oversized box

 		
 Custom Constraints

 		
 Example - only allow 2 batteries per box

 		
 Example - don’t allow batteries to be stacked

 		
 What’s new / Upgrading

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

